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Abstract 

�

 In one-dimensional calculations of pulsed detonation engine (PDE) performance, the exit 
boundary condition is frequently taken to be a constant static pressure. In reality, for an isolated 
detonation tube, after the detonation wave arrives at the exit plane, there will be a region of high 
pressure, which will gradually return to ambient pressure as an almost spherical shock wave 
expands away from the exit, and weakens. Initially, the flow is supersonic, unaffected by 
external pressure, but later becomes subsonic. Previous authors have accounted for this situation 
either by assuming the subsonic pressure decay to be a relaxation phenomenon, or by running a 
two-dimensional calculation first, including a domain external to the detonation tube, and using 
the resulting exit pressure temporal distribution as the boundary condition for one-dimensional 
calculations. These calculations show that the increased pressure does affect the PDE 
performance.��
 In the present work, a simple model of the exit process is used to estimate the pressure decay 
time. The planar shock wave emerging from the tube is assumed to transform into a spherical 
shock wave. The initial strength of the spherical shock wave is determined from comparison with 
experimental results. Its subsequent propagation, and resulting pressure at the tube exit, is given 
by a numerical blast wave calculation. The model agrees reasonably well with other, limited, 
results. 
 Finally, the model was used as the exit boundary condition for a one-dimensional calculation 
of PDE performance to obtain the thrust wall pressure for a hydrogen-air detonation in tubes of 
length to diameter ratio (L/D) of 4, and 10, as well as for the original, constant pressure boundary 
condition. The modified boundary condition had no performance impact for values of L/D > 10, 
and moderate impact for L/D = 4. 
 

Introduction 
 
 One-dimensional CFD calculations are very useful in assessing the effects of parameter 
variations quickly, since they can usually be performed quite rapidly. However, the flow 
emerging from a detonation tube becomes three-dimensional immediately; some way of 
approximating this three-dimensional situation is needed to establish the boundary condition at 
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the tube end. At some point in the cycle of a pulsed detonation engine, a strong compression 
wave will arrive at the exit of the tube, and propagate into the region beyond the detonation tube. 
This wave will either be the detonation wave itself, if the tube is completely filled with 
combustible mixture, or the transmitted shock from the interaction of the detonation wave with 
the combustible gas-air interface. In calculating the cycle, it is necessary to know how this wave 
reflects at the tube exit. For weak waves, it is well known that a shock wave reflects at the exit of 
a tube as an expansion wave, with the exit pressure approximately constant (Rudinger 1955a). 
This result is so ingrained that it is tempting to use it even for strong shocks such as those found 
in the pulsed detonation engine. However, this is not true for strong shocks. Rudinger (1955a) 
concluded that in this case, if the outflow is supersonic, and since pressure waves cannot travel 
upstream in supersonic flow, the pressure cannot return to ambient conditions. He states that 
“final expansion to the exterior pressure must then take place outside the duct, and is of no 
concern here.” Despite this, Rudinger (1955b) subsequently, using acoustic theory, calculated the 
pressure decay as a function of time at the end of a shock tube following the exit of a shock wave 
from the tube. He found that the pressure decays in the time in which a sound wave can travel 
about three tube diameters. The calculation was in quite good agreement with values inferred 
from upstream pressure measurements in a shock tube. The calculation is valid only for weak 
shock waves, but even in this case the pressure does not return to atmospheric immediately after 
the emergence of a shock wave from a tube. The appropriate dimension for the pressure decay is 
the tube diameter, not its length.  
 For the calculation of a PDE cycle, it is necessary to estimate the pressure decay rate as it can 
affect the calculated performance. Considered here will be the case of an isolated detonation 
tube, which, though not necessarily representative of an actual engine, is typical of many 
experiments. Kailasanath (2001) treated this problem by assuming that, after the flow becomes 
subsonic, the exit pressure decayed as a relaxation process, and found that the higher pressure at 
the tube exit increased the PDE performance. However, it is not clear what relaxation time 
should be used. Ebrahimi et al. (2000) performed two-dimensional calculations, including a 
region external to the tube, to establish a pressure-time relationship at the tube exit to use in one- 
dimensional calculations. These two-dimensional calculations must be repeated for calculating a 
different geometry, so this destroys the ease of use of one-dimensional calculations. What is 
needed is a simple way of applying a two-dimensional (or more) result to a one-dimensional 
calculation. This is the objective of the present work, and is achieved by using a model of the 
external flow. 
 

Symbols 
 

a speed of sound 
D diameter of detonation tube 
E energy of shock wave 
L length of detonation tube 
� length filled with reactive mixture 
P Riemann invariant = u + 2 a/(γ – 1) 
p  pressure 
∆p pressure jump at shock wave 
Q detonation enthalpy/unit mass 
R radial distance from shock wave center 
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t real time 
u gas velocity 
Vcj detonation wave velocity 
x axial distance from end of tube 
γ ratio of specific heats 
ε length related to shock wave energy 
λ non-dimensional radius = R/ε 
ρ density 
τ nondimensional time 
 
Superscripts: 
chem chemical 
PDE related to pulsed detonation device 
ref reference value 
s value at shock wave 
0 initial position of spherical shock 
2 ambient air 
1,3,4,5 regions defined in fig. 1 
 

Model Description 
 
 The planar wave leaving the exit of the tube will be the transmitted wave from the interaction 
of the detonation wave on the mixture/air interface (assuming a fuel-air reaction). The solution to 
the problem of a shock (or detonation) wave incident on an interface is given by Rudinger 
(1995a). The scheme is illustrated in fig. 1, which is a space–time diagram showing wave 
trajectories. Region 1 is assumed to be filled with a detonable mixture of fuel and air, with the 
fuel being hydrogen in the example. Region 2 is assumed to be air, although in a situation of 
repeated detonations, it might be vitiated air. The interface between the two gases cannot support 
a pressure difference, and so velocity and pressure are the same in both regions. For a single 
detonation, the velocity will be zero, as in fig. 1, but may not be for repeated detonations.  

Figure 1. Distance-time plot of the interaction of a detonation wave with an interface. 
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 The detonation wave impinges on the interface from the left. The gas on the right hand side 
of the interface contains no fuel, and so will not support a detonation, and the transmitted wave 
will be a shock wave. The conditions behind a hydrogen-air detonation are given in Borman and 
Ragland (1998), and are listed in fig. 1. The process of solving for the transmitted shock strength 
is iterative. A shock Mach number is assumed, from which the pressure and velocity behind the 
shock (region 4) can be calculated. These values must also hold in region 5, to the left of the 
interface. Given the pressure ratio across the expansion wave, the temperature ratio can be 
calculated since an expansion wave is isentropic. Hence the speed of sound in region 5 can be 
determined. Across an expansion, the Riemann invariant, P = u + 2 a / (γ -1) is constant, so 
another evaluation of the velocity in region 5 can be made by equating the known P3 to P5. The 
procedure is repeated until both values of u5 agree. Using a spreadsheet, the iteration can be 
performed rapidly. 
 With this procedure, the transmitted shock in air is found to have a Mach number of 3.385, 
with a pressure ratio of 13.2. This is the initial pressure at the exit after the shock emerges. 
Although this is a one-dimensional result, it will hold until expansion waves from the edges have 
reduced the pressure. The development of the shock wave is envisioned in fig. 2. On leaving the 
detonation tube, the wave is still planar, except at the edges (fig. 2a). As the edge waves grow, 
the shock wave becomes more spherical, although initially there will still be a planar portion
near the axis (fig. 2b). At later time, the wave will become essentially spherical (fig. 2c). 
 That this actually occurs can be seen from the photographs of a similar situation, namely, the 
precursor blast wave from a gun (Heimerl and Klingenberg 1983), showing an almost spherical 
shock wave propagating ahead of the bullet. Schlieren photographs of a shock wave emerging 
from an open shock tube (Elder and de Haas 1952) add further confirmation. 

Figure 2. (a) the shock wave emerging from the detonation tube is mostly planar,  
(b) at a distance of about 0.7 D, only a small planar region remains,  

(c) for distances above 1.3 D, the wave is almost spherical. 
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 For calculating pressures it is necessary to ascertain the strength of the spherical shock wave. 
For this, recourse is made to the experiments of Ungut et al. (1984). These workers measured the 
centerline trajectory of the transmitted wave from detonations in various mixtures in a tube of 
diameter D, expanding into a larger region, which also contained the combustible gas mixture. 
The centerline shock velocity stayed almost constant, consistent with unattenuated planar shock 
propagation, up to a distance of about 0.7 D from the tube exit. In cases in which detonation was 
not reinitiated in the larger region, the wave then decelerated rapidly to a distance of 1.3 D, after 
which it decelerated more slowly. This is shown in fig. 3, showing two of the trajectories 
measured by Ungut et al., for two different mixtures, in tubes of different diameters. At
the point at which the deceleration decreases, the velocity of the shock wave is seen to be about 
half the Chapman-Jouguet detonation velocity Vcj. This will be taken to be a general rule, namely 
that the spherical shock is characterized by having a velocity of half Vcj at a distance of  
1.3 diameters from the tube exit, at which point the shock radius is also 1.3 D. The shock radius 
of 1.3D will be called the initial radius, R0, of the spherical wave. Thus the spherical wave 
pressure jump at R0, ∆p0, will be that corresponding to a shock wave traveling at half the 
detonation velocity. This defines the spherical blast wave. For hydrogen-air, with a detonation 
velocity of 1971 m/sec, ∆p0/p2 = 8.58. From this point on, the wave will be considered to 
propagate as a spherical blast wave. The propagation of a spherical blast wave into an ambient 
pressure of one atmosphere has been evaluated numerically by Brode (1955). Brode calculated 
the entire pressure distribution behind the blast wave for 32 different cases, of increasing shock 
radius. Three examples are given in fig. 4, in which pressure is plotted against dimensionless 
radius λ = R/ε,  where ε = (Ε/p2)

1/3
 is a length determined by the energy E which produced the 

shock wave, and the ambient pressure p2. A strong shock is shown at λ = 0.28, for which the 
pressure behind the wave decreases monotonically with decreasing radius, reaching a value at the 
 

 
Figure 3. Shock wave speed versus non-dimensionalized distance from the end  

of the detonation tube ( x/D ), from the experiments of Ungut et al. (1984). 
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Figure 4. Pressure distribution behind blast waves for shocks  

at three dimensionless radii, from Brode (1955). 
 
 
center of the wave system p(R= 0) of 0.375 of the pressure behind the shock front. For the 
medium strength shock at λ = 0.8, the pressure at wave center is below atmospheric. The weak 
shock at λ = 2.2 is followed by a region of sub-atmospheric pressure, but the pressure returns to 
atmospheric at the wave center. The value of the pressure at the wave center will be considered 
to be the pressure boundary condition at the detonation tube exit, which is the objective of this 
work. Thus the important values from Brode’s work are the shock wave pressure ratio, the 
pressure at the wave center, and the time and radius at which these occur. Taken from Brode’s 
graphs, these quantities are given in table 1. A given shock pressure jump ∆p/p2 will occur at a 
dimensionless shock radius λs = Rs/ε, according to the relation: 
 
 ∆p/p2 = 0.137/λs

3 + 0.119/ λs
2 + 0.269/ λs - 0.019 (1) 

 
For the detonation case, since ∆p0/p2 is known when the shock is at a radius Rs = R0 = 1.3 D, the 
value of λs follows from the above equation, and hence the value of ε can be determined. For 
hydrogen-air detonations, with ∆p0/p2 = 8.58, λs = 0.282, and ε = 4.61 D.  
 The pressure at the wave center, p(R = 0) is given by Brode in terms of a dimensionless time 
τ = t a2 / ε, in which t = real time, and a2 is the speed of sound in the ambient air, and is plotted in 
fig. 5. The Brode portion of this graph is a universal plot, and constitutes the desired boundary 
condition for the detonation tube exit. For any particular case, ε is found as described above, and 
then τ can be converted to real time. 
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Table 1. Properties of a blast wave, from Brode (1955). 
Shock Pressure  

Ratio 
Dimensionless  

Time 
Dimensionless  

Radius 
p(R=0)/p2 

11 0.0350 0.258 4.0 
8.6 0.0448 0.286 3.0 
7.0 0.0565 0.320 2.4 
5.2 0.0761 0.360 1.8 
4.0 0.0995 0.406 1.4 
3.2 0.1307 0.467 1.15 
3.15 0.1386 0.479 1.1 
2.8 0.1620 0.535 0.99 
2.41 0.2011 0.575 0.90 
2.13 0.2479 0.645 0.83 
1.92 0.2948 0.707 0.80 
1.70 0.3709 0.811 0.79 
1.52 0.4979 0.971 0.80 
1.41 0.6229 1.112 0.86 
1.39 0.6542 1.125 0.86 
1.28 0.8729 1.383 0.92 
1.20 1.1854 1.721 0.97 
1.14 1.6229 2.212 1.00 

 
       

 

 
Figure 5. Pressure at the blast wave center versus dimensionless time. 
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Comparison with Other Results 
�

 Moen et al. (1982) have reported measurements of the overpressure at three distances from 
the exit of the Norwegian large explosion experiment, and also report a calculation of 
overpressure versus distance by Hjertager for a methane-air detonation, although detonation in 
methane-air was not apparently achieved. For methane-air, the detonation velocity is 1801 m/sec, 
and hence ∆p0/p2 = 6.96. For this experiment, the tube length is 10m, and the diameter is 2.5 m, 
giving an L/D of 4. With these values, the overpressure versus distance can be evaluated using 
the above model. The result of this calculation, together with Hjertager’s calculation are plotted 
in fig. 6a. The distance to a given overpressure for the blast wave calculation is about 80% of the 
values found by Hjertager. This is quite good agreement. There do not appear to be any 
experimental data for the detonation case. However, the Hjertager calculation does give a good 
fit to the available data for explosions without detonation, and so is presumably reliable also for 
detonations. 
 Sochet et al. (1999) generated planar detonations in a cylindrical half tube, closed at one end, 
and open at the other. The tube was mounted on a plane. They used pressure transducers to 
measure the time taken by the blast wave emerging from the open end into the atmosphere to 
reach seven locations in the plane along the cylinder axis. Their results for a stoichiometric 
hydrogen-oxygen mixture in a 16 mm diameter half tube are given in fig. 6b, together with 
calculations using the present blast wave model. The agreement is excellent. Not quite so good is 
the agreement for detonation of a propane-oxygen mixture in a 36 mm tube, but it is still not bad. 
That the blast wave calculation is in fair agreement with the large scale, i.e., 50 m blast wave 
radius calculation for the Norwegian experiment, and good agreement with the small scale,  
i.e., less than 0.4 m blast wave radius, experiment of Sochet et al., is very encouraging. 
 
  

(a)  (b)  
 
Figure 6. (a) Calculated blast overpressure versus distance from the blast wave calculation, and 
from Hjertager’s calculation (Moen et al. 1982), for the Norwegian large explosion experiment. 
(b) Plot of blast wave radius versus time after leaving the detonation tube using the blast wave 

calculation, together with the experimental points of Sochet et al. (1999). 
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Application to PDE Calculation 
�

 Ebrahimi et al. (2000) performed CFD calculations of the pressure distribution at the end of a 
20 mm high rectangular detonation tube, assuming a cylindrical blast wave, by including a 
region external to the detonation tube into the calculation. Since a cylindrical blast wave will 
decay at a slower rate than a spherical one, there is not a direct comparison here, but there should 
be qualitative agreement. A comparison of the prediction of the present model with that of 
Ebrahimi et al. is given in fig. 7. As will be seen, there is indeed qualitative agreement, with the 
blast wave calculation decaying more rapidly as expected. Note, however, that if the velocity of 
the gas exiting from the detonation tube is sonic or greater, the internal pressure at the end of the 
tube should differ from the external pressure. The acoustic calculation of Rudinger (1955b) is 
also given. Rudinger’s calculation is in quite good agreement with his experimental evaluations 
of internal pressure at the tube exit, and is close to the result of Ebrahimi et al. (2000). 

Figure 7. Comparison of the external pressure evolution with time for the blast wave 
calculation for a 20 mm tube, and the CFD calculation of Ebrahimi et al.  

The acoustic calculation of Rudinger is also indicated. 
 

 
 A one-dimensional, time accurate, CFD code for analysis of PDE cycles has been developed 
at the NASA Glenn Research Center by Paxson (2001). Using a high-resolution scheme, the code 
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calorically perfect gas with specified boundary conditions. In the code, a non-dimensional time is 
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 τPDE = aref t / L  (2) 
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 τ  = τPDE ( L/D ) (a2 / aref ) / 4.61 (3) 
 
in which τ must be measured from the arrival of the detonation wave, or transmitted wave, at the 
tube exit. At any value of τ, the exit pressure can be found from fig. 5, and is assumed to be 
imposed at the exhaust boundary of the tube. Using this pressure, and the known state of the gas 
in the last interior computational cell, a so-called Half-Riemann problem can be solved giving 
rise to two possible states separated by an associated wave and a contact discontinuity. This is 
illustrated in fig. 8. If the solution to this problem results in a strictly left running wave  
(e.g., a subsonic shock or fan) as shown in the figure, then the pressure in the region labeled 2 is 
identical to the imposed external pressure. If, on the other hand, the solution yields a right 
running wave (e.g., a shock followed by supersonic flow behind it, or a fan that crosses the sonic 
line) then the flow in Region 2 will not be at the same pressure as the imposed pressure. Then the 
conditions in Region 2 are entirely determined by the interior cell state. The pressure trace 
labeled ‘Internal static pressure’ in fig. 9 represents the computed conditions in Region 2.  
 Calculations for tube L/D ratios of 4, and 10, as well as a calculation with the constant 
pressure boundary condition, have been made, and the results are shown in fig. 9 and fig. 10.  
Figure 9 shows the calculated internal static pressure at the end of the tube, as well as the 
external pressure calculated with the blast wave model, and the Mach number of the flow at the 
tube exit. As can be seen, the Mach number is above unity up to a τPDE of 0.83, and hence the 
flow is choked and can not be affected by external pressure. With a tube of L/D = 10 (fig. 9a), 
the flow static pressure and external pressure are both equal, and equal to one atmosphere at τPDE 
= 0.83. Thus by the time that the external pressure could have any effect, it has already returned 
to one atmosphere. Obviously a boundary condition of constant pressure equal to one atmosphere 
has the same result. Calculation confirmed this, and so the result is not plotted. Any value of L/D 
above 10 will give the same result as the constant, one atmosphere, boundary condition. For a 
tube of L/D of 4, as shown in fig. 9b, the external pressure, and the tube static pressure, which is 
equal to the external pressure, are both sub-atmospheric at τPDE = 0.83, though not by much. 
However, it is enough to affect the cycle. This can be seen in fig. 10, which is the evolution with 
time of the pressure on the front, i.e., thrust, wall. The top of the leading edge of the positive 
pressure pulse at the front wall for L/D = 4 is delayed relative to that for L/D = 10, and the 
integral of pressure with time is reduced, indicating somewhat lower thrust. This effect will be 
increased for lower values of L/D, but since such values do not seem practical, no such results 
are given. Note, however, that the limiting value of L/D, above which no difference from the 
constant pressure boundary condition is seen, is dependant on the assumption of the model that 
R0 = 1.3 D. As was seen in fitting the blast wave model to Hjertager’s calculation (Moen 1982), 
the blast wave model gave lower values of radius for a given overpressure than did Hjertager. 
Better agreement could be reached by using a larger value for R0. This would lead to a larger 
value of the limiting L/D for detonation tube calculations. On the other hand, use of a larger 
value of R0 appears inconsistent with the data of Ungut et al. (1984), and Sochet et al. (1999). In 
any case, a more exact value of R0 is not likely to influence the present conclusions greatly. 
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Figure 8. Diagram of the Half-Riemann problem. 
 
 
 
 
 

 
 

Figure 9. Mach number and pressures at tube exit for (a) L/D = 10, and (b) L/D = 4. 
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Figure 10. Pressure on the front wall of the detonation tube versus τPDE , 

for L/D = 10, and L/D = 4. 
�

Discussion 
 

The present calculations indicate a reduction of thrust when the external pressure is taken 
into account, whereas Kailasanath (2001) found an increase in thrust. This is because the present 
results show the external pressure being atmospheric or less when the exit flow becomes 
subsonic, with a decrease in thrust when it is subatmospheric. Kailasanath used different decay 
times, with an exit pressure entirely above atmospheric, and found that the longer the pressure 
took to decay, the greater the thrust. Even his shortest decay time was longer than the decay time 
calculated here. As pointed out by Kailasanath, a long decay time might be achieved with a 
nozzle, and this seems to be a desirable technique.  
 The experiments of Ungut et al. (1984) were performed with detonations leaving a tube and 
traveling into the same detonable mixture as was in the tube initially. Thus, on the centerline, 
where the emerging wave is still planar to a distance of 0.7D, it is still a detonation. On the other 
hand, in a pulsed detonation engine, the wave will leave the tube, and propagate in air. The 
detonation will extinguish as soon as the detonation reaches the air-mixture interface. This is a 
different case from the experiments of Ungut et al., and may require a different prescription for 
the blast wave strength. At present, there is no basis for a different prescription. However, one 
would expect the blast wave to be weaker in this case, resulting in a more rapid pressure decay. 
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Conclusions 
�

 A blast wave model, based on the spherical shock being characterized by having half the 
Chapman-Jouguet velocity at a radius of 1.3 times the detonation tube diameter, appears to give 
realistic values for the externally imposed pressure distribution with time for an isolated 
detonation tube. However, it is only for tubes with length to diameter ratios less than 10 that this 
pressure distribution causes a result any different from a calculation using a constant pressure 
boundary condition. For lower values of length to diameter ratio, an effect on the thrust is 
noticed; the effect is to reduce the thrust slightly. The appropriate dimension for the pressure 
decay is the tube diameter. 
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Appendix A: Comment on the shock energy 
�

The prescription offered above that the emerging wave is characterized by having a velocity 
of half the detonation velocity, at a radius of 1.3 D must be related to the chemical energy 
liberated by the detonation, Echem. Certainly the energy of the blast wave, E, can not be greater 
than Echem, which is simply (Zitoun and Desbordes 1999): 
 
 Echem = Q ρ1 π D2 �/4 (A1) 
 
In order to obtain a value for E from the prescription above, the strong shock form (Taylor 1950) 
of equation 1,  
 
 ps / p2 = 0.155 λs

–3  (A2) 
 
is used together with the normal shock relations, in strong shock form, 
 
 ps / p2 ≈ 2 γ2 Ms

2 /(γ2 + 1) (A3) 
 
Equating equations A2 and A3, and inserting the values at R0 of Ms = Vcj/ 2 a2, and R0 = 1.3 D, 
and recalling that  
 
 λs = R0 / ε = 1.3 D/(E/p2)

1/3 (A4) 
 
it is found that: 
 
 E = ρ2 (1.3 D)3 Vcj

2 /[ 2 (γ2 + 1) 0.155] (A5) 
 
The detonation velocity is related to the detonation enthalpy, Q, via (Zitoun and Desbordes 1999): 
 
 Vcj

2 = 2 (γ3
2 – 1) Q (A6) 

 
So that: 
 
 E = ρ2 Q D3 [1.33 (γ3

2– 1) / 0.155(γ2 + 1)] 
 = 2.07 (π/4) ρ2 Q D2

� (D/�) 
 = 2.07 Echem (D/�) (ρ2 /ρ1) (A7) 
 
As stated above, E cannot be greater than Echem, implying that the simple prescription breaks 
down for �/D less than 2.07 (assuming ρ2 ≈ ρ1). The experiments of Ungut et�al. (1984) were 
performed at �/D = L/D = 13.4 or greater, so that E < Echem for their results. Since the blast wave 
pressure, and radius scale with the cube root of E, and are therefore insensitive to the exact value 
of E, it is probably equally valid to use E = Echem, as did Zitoun and Desbordes (1999). However, 
one would expect that there would be some losses which would make E < Echem. This is why the 
experiments of Ungut et al. were used to determine E in this work. 
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